Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
Comput Biol Med ; 173: 108396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574529

RESUMO

Acute myeloid leukemia (AML) is an aggressive malignancy characterized by challenges in treatment, including drug resistance and frequent relapse. Recent research highlights the crucial roles of tumor microenvironment (TME) in assisting tumor cell immune escape and promoting tumor aggressiveness. This study delves into the interplay between AML and TME. Through the exploration of potential driver genes, we constructed an AML prognostic index (AMLPI). Cross-platform data and multi-dimensional internal and external validations confirmed that the AMLPI outperforms existing models in terms of areas under the receiver operating characteristic curves, concordance index values, and net benefits. High AMLPIs in AML patients were indicative of unfavorable prognostic outcomes. Immune analyses revealed that the high-AMLPI samples exhibit higher expression of HLA-family genes and immune checkpoint genes (including PD1 and CTLA4), along with lower T cell infiltration and higher macrophage infiltration. Genetic variation analyses revealed that the high-AMLPI samples associate with adverse variation events, including TP53 mutations, secondary NPM1 co-mutations, and copy number deletions. Biological interpretation indicated that ALDH2 and SPATS2L contribute significantly to AML patient survival, and their abnormal expression correlates with DNA methylation at cg12142865 and cg11912272. Drug response analyses revealed that different AMLPI samples tend to have different clinical selections, with low-AMLPI samples being more likely to benefit from immunotherapy. Finally, to facilitate broader access to our findings, a user-friendly and publicly accessible webserver was established and available at http://bioinfor.imu.edu.cn/amlpi. This server provides tools including TME-related AML driver genes mining, AMLPI construction, multi-dimensional validations, AML patients risk assessment, and figures drawing.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Metilação de DNA , Microambiente Tumoral , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo
2.
Front Endocrinol (Lausanne) ; 15: 1333595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567307

RESUMO

Introduction: Acetaldehyde dehydrogenase 2 (ALDH2) had reported as a prominent role in the development of cardiometabolic diseases among Asians. Our study aims to investigate the relationship between ALDH2 polymorphism and cardiometabolic risk factors in East Asian population. Method: We searched databases of PubMed, Web of Science, and Embase updated to Oct 30th, 2023. We extracted data of BMI, Hypertension, SBP, DBP, T2DM, FBG, PPG, HbA1c, TG, TC, LDL-C and HDL-C. Result: In total, 46 studies were finally included in our meta-analysis, containing, 54068 GG and, 36820 GA/AA participants. All outcomes related to blood pressure revealed significant results (hypertension OR=0.83 [0.80, 0.86]; SBP MD=-1.48 [-1.82, -1.14]; DBP MD=-1.09 [-1.58, -0.61]). FBG showed a significant difference (MD=-0.10 [-0.13, -0.07]), and the lipid resulted significantly in some outcomes (TG MD=-0.07 [-0.09, -0.04]; LDL-C MD=-0.04 [-0.05, -0.02]). As for subgroups analysis, we found that in populations without severe cardiac-cerebral vascular diseases (CCVDs), GG demonstrated a significantly higher incidence of T2DM (T2DM OR=0.88 [0.79, 0.97]), while the trend was totally opposite in population with severe CCVDs (T2DM OR=1.29 [1.00, 1.66]) with significant subgroup differences. Conclusion: Our updated meta-analysis demonstrated that ALDH2 rs671 GG populations had significantly higher levels of BMI, blood pressure, FBG, TG, LDL-C and higher risk of hypertension than GA/AA populations. Besides, to the best of our knowledge, we first report GG had a higher risk of T2DM in population without severe CCVDs, and GA/AA had a higher risk of T2DM in population with severe CCVDs.Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023389242.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Aldeído-Desidrogenase Mitocondrial/genética , Povo Asiático/genética , Fatores de Risco Cardiometabólico , LDL-Colesterol , População do Leste Asiático , Hipertensão/epidemiologia , Hipertensão/genética
3.
Medicine (Baltimore) ; 103(16): e37820, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640328

RESUMO

Aldehyde dehydrogenase 2 (ALDH2) plays a critical role in safeguarding cells against acetaldehyde toxicity and is closely linked to human metabolism. Nevertheless, the involvement of ALDH2 in cancer remains enigmatic. This investigation seeks to comprehensively assess ALDH2's significance in pan-cancer. We conducted an all-encompassing analysis of pan-cancer utilizing multiple databases, including TCGA, linkedomicshs, UALCAN, and Kaplan-Meier plotter. We employed diverse algorithms such as EPIC, MCPCOUNTER, TIDTIMER, xCell, MCP-counter, CIBERSORT, quanTIseq, and EPIC to examine the connection between ALDH2 expression and immune cell infiltration. Single-cell sequencing analysis furnished insights into ALDH2's functional status in pan-cancer. Immunohistochemical staining was performed to validate ALDH2 expression in cancer tissues. In a comprehensive assessment, we observed that tumor tissues demonstrated diminished ALDH2 expression levels compared to normal tissues across 16 different cancer types. ALDH2 expression exhibited a significant positive correlation with the infiltration of immune cells, including CD4 + T cells, CD8 + T cells, neutrophils, B cells, and macrophages, in various tumor types. Moreover, this study explored the association between ALDH2 and patient survival, examined the methylation patterns of ALDH2 in normal and primary tumor tissues, and delved into genetic variations and mutations of ALDH2 in tumors. The findings suggest that ALDH2 could serve as a valuable prognostic biomarker in pan-cancer, closely linked to the tumor's immune microenvironment.


Assuntos
Acetaldeído , Neoplasias , Humanos , Prognóstico , Algoritmos , Neoplasias/genética , Biomarcadores , Microambiente Tumoral , Aldeído-Desidrogenase Mitocondrial/genética
4.
Int J Biol Macromol ; 265(Pt 2): 131091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521319

RESUMO

Acetaldehyde dehydrogenase 2 (ALDH2) is a crucial enzyme in alcohol metabolism, and oral administration of ALDH2 is a promising method for alcohol detoxification. However, recombinant ALDH2 is susceptible to hydrolysis by digestive enzymes in the gastrointestinal tract and is expressed as inactive inclusion bodies in E. coli. In this study, we performed three rounds of rational design to address these issues. Specifically, the surface digestive sites of pepsin and trypsin were replaced with other polar amino acids, while hydrophobic amino acids were incorporated to reshape the catalytic cavity of ALDH2. The resulting mutant DE2-852 exhibited a 45-fold increase in soluble expression levels, while its stability against trypsin and pepsin increased by eightfold and twofold, respectively. Its catalytic efficiency (kcat/Km) at pH 7.2 and 3.2 improved by more than four and five times, respectively, with increased Vmax and decreased Km values. The enhanced properties of DE2-852 were attributed to the D457Y mutation, which created a more compact protein structure and facilitated a faster collision between the substrate and catalytic residues. These results laid the foundation for the oral administration and mass preparation of highly active ALDH2 and offered insights into the oral application of other proteins.


Assuntos
Aldeído Desidrogenase , Pepsina A , Humanos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/química , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Tripsina , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38462476

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19), first reported in December 2019, spread worldwide in a short period, resulting in numerous cases and associated deaths; however, the toll was relatively low in East Asia. A genetic polymorphism unique to East Asians, Aldehyde dehydrogenase 2 rs671, has been reported to confer protection against infections. METHOD: We retrospectively investigated the association between the surrogate marker of the rs671 variant, the skin flushing phenomenon after alcohol consumption, and the timing of COVID-19 incidence using a web-based survey tool to test any protective effects of rs671 against COVID-19. RESULTS: A total of 807 valid responses were received from 362 non-flushers and 445 flushers. During the 42 months, from 12/1/2019 to 5/31/2023, 40.6% of non-flushers and 35.7% of flushers experienced COVID-19. Flushers tended to have a later onset (Spearman's partial rank correlation test, p = 0.057, adjusted for sex and age). Similarly, 2.5% of non-flushers and 0.5% of flushers were hospitalized because of COVID-19. Survival analysis estimated lower risks of COVID-19 and associated hospitalization among flushers (p = 0.03 and <0.01, respectively; generalized Wilcoxon test). With the Cox proportional hazards model covering 21 months till 8/31/2021, when approximately half of the Japanese population had received two doses of COVID-19 vaccine, the hazard ratio (95% confidence interval) of COVID-19 incidence was estimated to be 0.21 (0.10-0.46) for flusher versus non-flusher, with adjustment for sex, age, steroid use, and area of residence. CONCLUSIONS: Our study suggests an association between the flushing phenomenon after drinking and a decreased risk of COVID-19 morbidity and hospitalization, suggesting that the rs671 variant is a protective factor. This study provides valuable information for infection control and helps understand the unique constitutional diversity of East Asians.


Assuntos
Consumo de Bebidas Alcoólicas , COVID-19 , Humanos , Estudos Retrospectivos , Consumo de Bebidas Alcoólicas/epidemiologia , Japão/epidemiologia , Fatores de Proteção , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Rubor/epidemiologia , Rubor/genética , Internet , Aldeído-Desidrogenase Mitocondrial/genética
6.
Nat Commun ; 15(1): 2594, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519490

RESUMO

In the ALDH2 rs671 variant, a guanine changes to an adenine, resulting in a dramatic decrease in the catalytic activity of the enzyme. Population-based data are contradictory about whether this variant increases the risk of Alzheimer's disease. In East Asian populations, the prevalence of the ALDH2 rs671 variant is 30-50%, making the National Human Brain Bank for Development and Function (the largest brain bank in East Asia) an important resource to explore the link between the ALDH2 rs671 polymorphism and Alzheimer's disease pathology. Here, using 469 postmortem brains, we find that while the ALDH2 rs671 variant is associated with increased plaque deposits and a higher Aß40/42 ratio, it is not an independent risk factor for Alzheimer's disease. Mechanistically, we show that lower ALDH2 activity leads to 4-HNE accumulation in the brain. The (R)-4-HNE enantiomer adducts to residue Lys53 of C99, favoring Aß40 generation in the Golgi apparatus. Decreased ALDH2 activity also lowers inflammatory factor secretion, as well as amyloid ß phagocytosis and spread in brains of patients with Alzheimer's disease. We thus define the relationship between the ALDH2 rs671 polymorphism and amyloid ß pathology, and find that ALDH2 rs671 is a key regulator of Aß40 or Aß42 generation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/genética , Doença de Alzheimer/genética , Polimorfismo de Nucleotídeo Único , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído Desidrogenase/genética , Predisposição Genética para Doença
7.
Commun Biol ; 7(1): 305, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461358

RESUMO

Despite the high prevalence of snoring in Asia, little is known about the genetic etiology of snoring and its causal relationships with cardiometabolic traits. Based on 100,626 Chinese individuals, a genome-wide association study on snoring was conducted. Four novel loci were identified for snoring traits mapped on SLC25A21, the intergenic region of WDR11 and FGFR, NAA25, ALDH2, and VTI1A, respectively. The novel loci highlighted the roles of structural abnormality of the upper airway and craniofacial region and dysfunction of metabolic and transport systems in the development of snoring. In the two-sample bi-directional Mendelian randomization analysis, higher body mass index, weight, and elevated blood pressure were causal for snoring, and a reverse causal effect was observed between snoring and diastolic blood pressure. Altogether, our results revealed the possible etiology of snoring in China and indicated that managing cardiometabolic health was essential to snoring prevention, and hypertension should be considered among snorers.


Assuntos
Hipertensão , Ronco , Humanos , Ronco/genética , Ronco/epidemiologia , Estudo de Associação Genômica Ampla , Bancos de Espécimes Biológicos , Hipertensão/epidemiologia , Hipertensão/genética , Pressão Sanguínea/genética , Aldeído-Desidrogenase Mitocondrial/genética
8.
J Pharmacol Exp Ther ; 389(2): 163-173, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453527

RESUMO

Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.


Assuntos
Aldeído Oxirredutases , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética
9.
Sci Rep ; 14(1): 4183, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378847

RESUMO

Melanoma is a malignant skin tumor. This study aimed to explore and assess the effect of novel biomarkers on the progression of melanoma. Differently expressed genes (DEGs) were screened from GSE3189 and GSE46517 datasets of Gene Expression Omnibus database using GEO2R. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted based on the identified DEGs. Hub genes were identified and assessed using protein-protein interaction networks, principal component analysis, and receiver operating characteristic curves. Quantitative real-time polymerase chain reaction was employed to measure the mRNA expression levels. TIMER revealed the association between aldehyde dehydrogenase 2 (ALDH2) and tumor immune microenvironment. The viability, proliferation, migration, and invasion were detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and transwell assays. Total 241 common DEGs were screened out from GSE3189 and GSE46517 datasets. We determined 6 hub genes with high prediction values for melanoma, which could distinguish tumor samples from normal samples. ALDH2, ADH1B, ALDH3A2, DPT, EPHX2, and GATM were down-regulated in A375 and SK-MEL-2 cells, compared with the human normal melanin cell line (PIG1 cells). ALDH2 was selected as the candidate gene in this research, presenting a high diagnostic and predictive value for melanoma. ALDH2 had a positive correlation with the infiltrating levels of immune cells in melanoma microenvironment. Overexpression of ALDH2 inhibited cell viability, proliferation, migration, and invasion of A375/SK-MEL-2 cells. ALDH2 is a new gene biomarker of melanoma, which exerts an inhibitory effect on melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/patologia , Perfilação da Expressão Gênica , Biomarcadores , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Mapas de Interação de Proteínas/genética , Microambiente Tumoral/genética , Aldeído-Desidrogenase Mitocondrial/genética
11.
Circ Res ; 134(4): 425-441, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38299365

RESUMO

BACKGROUND: Human cardiac long noncoding RNA (lncRNA) profiles in patients with dilated cardiomyopathy (DCM) were previously analyzed, and the long noncoding RNA CHKB (choline kinase beta) divergent transcript (CHKB-DT) levels were found to be mostly downregulated in the heart. In this study, the function of CHKB-DT in DCM was determined. METHODS: Long noncoding RNA expression levels in the human heart tissues were measured via quantitative reverse transcription-polymerase chain reaction and in situ hybridization assays. A CHKB-DT heterozygous or homozygous knockout mouse model was generated using the clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 system, and the adeno-associated virus with a cardiac-specific promoter was used to deliver the RNA in vivo. Sarcomere shortening was performed to assess the primary cardiomyocyte contractility. The Seahorse XF cell mitochondrial stress test was performed to determine the energy metabolism and ATP production. Furthermore, the underlying mechanisms were explored using quantitative proteomics, ribosome profiling, RNA antisense purification assays, mass spectrometry, RNA pull-down, luciferase assay, RNA-fluorescence in situ hybridization, and Western blotting. RESULTS: CHKB-DT levels were remarkably decreased in patients with DCM and mice with transverse aortic constriction-induced heart failure. Heterozygous knockout of CHKB-DT in cardiomyocytes caused cardiac dilation and dysfunction and reduced the contractility of primary cardiomyocytes. Moreover, CHKB-DT heterozygous knockout impaired mitochondrial function and decreased ATP production as well as cardiac energy metabolism. Mechanistically, ALDH2 (aldehyde dehydrogenase 2) was a direct target of CHKB-DT. CHKB-DT physically interacted with the mRNA of ALDH2 and fused in sarcoma (FUS) through the GGUG motif. CHKB-DT knockdown aggravated ALDH2 mRNA degradation and 4-HNE (4-hydroxy-2-nonenal) production, whereas overexpression of CHKB-DT reversed these molecular changes. Furthermore, restoring ALDH2 expression in CHKB-DT+/- mice alleviated cardiac dilation and dysfunction. CONCLUSIONS: CHKB-DT is significantly downregulated in DCM. CHKB-DT acts as an energy metabolism-associated long noncoding RNA and represents a promising therapeutic target against DCM.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Cardiomiopatia Dilatada , RNA Longo não Codificante , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Regulação para Baixo , Hibridização in Situ Fluorescente , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
Gene ; 907: 148252, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38350514

RESUMO

Epidemiological studies have shown the association of genetic variants with risks of occupational and environmentally induced cancers, including bladder (BC). The current review summarizes the effects of variants in genes encoding phase I and II enzymes in well-designed studies to highlight their contribution to BC susceptibility and prognosis. Polymorphisms in genes codifying drug-metabolizing proteins are of particular interest because of their involvement in the metabolism of exogenous genotoxic compounds, such as tobacco and agrochemicals. The prognosis between muscle-invasive and non-muscle-invasive diseases is very different, and it is difficult to predict which will progress worse. Web of Science, PubMed, and Medline were searched to identify studies published between January 1, 2010, and February 2023. We included 73 eligible studies, more than 300 polymorphisms, and 46 genes/loci. The most studied candidate genes/loci of phase I metabolism were CYP1B1, CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2A6, CYP3E1, and ALDH2, and those in phase II were GSTM1, GSTT1, NAT2, GSTP1, GSTA1, GSTO1, and UGT1A1. We used the 46 genes to construct a network of proteins and to evaluate their biological functions based on the Reactome and KEGG databases. Lastly, we assessed their expression in different tissues, including normal bladder and BC samples. The drug-metabolizing pathway plays a relevant role in BC, and our review discusses a list of genes that could provide clues for further exploration of susceptibility and prognostic biomarkers.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Bexiga Urinária , Humanos , Glutationa Transferase/genética , Polimorfismo Genético , Citocromo P-450 CYP1A1/genética , Neoplasias da Bexiga Urinária/genética , Citocromo P-450 CYP2D6/genética , Predisposição Genética para Doença , Genótipo , Estudos de Casos e Controles , Fatores de Risco , Arilamina N-Acetiltransferase/genética , Aldeído-Desidrogenase Mitocondrial/genética
13.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396862

RESUMO

Atrial fibrillation (AF), characterized by structural remodeling involving atrial myocardial degradation and fibrosis, is linked with obesity and transforming growth factor beta 1 (TGF-ß1). Aldehyde dehydrogenase 2 (ALDH2) deficiency, highly prevalent in East Asian people, is paradoxically associated with a lower AF risk. This study investigated the impact of ALDH2 deficiency on diet-induced obesity and AF vulnerability in mice, exploring potential compensatory upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1). Wild-type (WT) and ALDH2*2 knock-in (KI) mice were administered a high-fat diet (HFD) for 16 weeks. Despite heightened levels of reactive oxygen species (ROS) post HFD, the ALDH2*2 KI mice did not exhibit a greater propensity for AF compared to the WT controls. The ALDH2*2 KI mice showed equivalent myofibril degradation in cardiomyocytes compared to WT after chronic HFD consumption, indicating suppressed ALDH2 production in the WT mice. Atrial fibrosis did not proportionally increase with TGF-ß1 expression in ALDH2*2 KI mice, suggesting compensatory upregulation of the Nrf2 and HO-1 pathway, attenuating fibrosis. In summary, ALDH2 deficiency did not heighten AF susceptibility in obesity, highlighting Nrf2/HO-1 pathway activation as an adaptive mechanism. Despite limitations, these findings reveal a complex molecular interplay, providing insights into the paradoxical AF-ALDH2 relationship in the setting of obesity.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Fibrilação Atrial , Animais , Camundongos , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/complicações , Fibrose , Fator 2 Relacionado a NF-E2 , Obesidade/complicações , Obesidade/genética , Fator de Crescimento Transformador beta1/genética
14.
Heart Lung Circ ; 33(2): 230-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177014

RESUMO

AIM: Pulmonary hypertension due to left heart disease (PH-LHD) is commonly seen in patients with heart failure (HF), but there are limited treatment options. Recent studies have shown an association between aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphisms and pulmonary hypertension (PH). Therefore, this study aimed to investigate the occurrence of ALDH2 rs671 polymorphisms, and the association between ALDH2 and risk of PH-LHD in patients with HF. It also investigated different ALDH2 genotypes and examined their association with cardiac structure and function in HF patients with PH-LHD. METHODS: A total of 178 HF patients were consecutively enrolled in this study: 102 without PH-LHD and 76 with PH-LHD. Clinical data, parameters of echocardiography, and relevant biochemical indexes were recorded in both groups. Differences in data obtained between groups were compared, and the risk of variant ALDH2 polymorphisms with PH-LHD in HF patients was analysed using univariate and multivariate logistic regression. RESULTS: The prevalence of ALDH2 rs671 GA/AA polymorphisms (variant ALDH2) was 24 of 102 patients (23.53%) in the HF without PH-LHD group, and 32 of 76 patients (42.10%) in the HF with PH-LHD group, with a statistically significant difference. Univariate and multivariate logistical regression showed that variant ALDH2 is an independent risk factor for HF combined with PH-LHD. A higher proportion of patients with variant ALDH2 in the HF with PH-LHD group had a tricuspid regurgitation velocity >2.8 m/s, and they had higher values of peak early diastolic velocity of the mitral orifice/peak velocity of the early diastolic wave of the mitral orifice, maximum frequency shift of pulmonary valve flow, and pulmonary artery stiffness. CONCLUSIONS: Variant ALDH2 may be an independent risk factor for HF combined with PH-LHD. Variant ALDH2 may also be involved in pulmonary artery remodelling and is a potential new target for clinical treatment of PH-LHD.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/etiologia , Cardiopatias/complicações , Fatores de Risco , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética
15.
Sci Adv ; 10(4): eade2780, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277453

RESUMO

An East Asian-specific variant on aldehyde dehydrogenase 2 (ALDH2 rs671, G>A) is the major genetic determinant of alcohol consumption. We performed an rs671 genotype-stratified genome-wide association study meta-analysis of alcohol consumption in 175,672 Japanese individuals to explore gene-gene interactions with rs671 behind drinking behavior. The analysis identified three genome-wide significant loci (GCKR, KLB, and ADH1B) in wild-type homozygotes and six (GCKR, ADH1B, ALDH1B1, ALDH1A1, ALDH2, and GOT2) in heterozygotes, with five showing genome-wide significant interaction with rs671. Genetic correlation analyses revealed ancestry-specific genetic architecture in heterozygotes. Of the discovered loci, four (GCKR, ADH1B, ALDH1A1, and ALDH2) were suggested to interact with rs671 in the risk of esophageal cancer, a representative alcohol-related disease. Our results identify the genotype-specific genetic architecture of alcohol consumption and reveal its potential impact on alcohol-related disease risk.


Assuntos
População do Leste Asiático , Neoplasias Esofágicas , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Consumo de Bebidas Alcoólicas/genética , Genótipo , Aldeído-Desidrogenase Mitocondrial/genética , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/genética , Predisposição Genética para Doença
16.
Transl Res ; 267: 25-38, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38181846

RESUMO

High-altitude heart disease (HAHD) is a complex pathophysiological condition related to systemic hypobaric hypoxia in response to transitioning to high altitude. Hypoxia can cause myocardial metabolic dysregulation, leading to an increased risk of heart failure and sudden cardiac death. Aldehyde dehydrogenase 2 (ALDH2) could regulate myocardial energy metabolism and plays a protective role in various cardiovascular diseases. This study aims to determine the effects of plateau hypoxia (PH) on cardiac metabolism and function, investigate the associated role of ALDH2, and explore potential therapeutic targets. We discovered that PH significantly reduced survival rate and cardiac function. These effects were exacerbated by ALDH2 deficiency. PH also caused a shift in the myocardial fuel source from fatty acids to glucose; ALDH2 deficiency impaired this adaptive metabolic shift. Untargeted/targeted metabolomics and transmission electron microscopy revealed that ALDH2 deficiency promoted myocardial fatty-acid deposition, leading to enhanced fatty-acid transport, lipotoxicity and mitochondrial dysfunction. Furthermore, results showed that ALDH2 attenuated PH-induced impairment of adaptive metabolic programs through 4-HNE/CPT1 signaling, and the CPT1 inhibitor etomoxir significantly ameliorated ALDH2 deficiency-induced cardiac impairment and improved survival in PH mice. Together, our data reveal ALDH2 acts as a key cardiometabolic adaptation regulator in response to PH. CPT1 inhibitor, etomoxir, may attenuate ALDH2 deficiency-induced effects and improved cardiac function in response to PH.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Hipóxia , Animais , Camundongos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Compostos de Epóxi , Insuficiência Cardíaca
17.
J Cardiovasc Transl Res ; 17(1): 169-182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36745288

RESUMO

Remote ischemic conditioning (RIC) can be effectively applied for cardio-protection. Here, to clarify whether RIC exerts myocardial protection via aldehyde dehydrogenase 2 (ALDH2), we established a myocardial ischemia/reperfusion (I/R) model in C57BL/6 and ALDH2 knockout (ALDH2-KO) mice and treated them with RIC. Echocardiography and single-cell contraction experiments showed that RIC significantly improved myocardial function and alleviated I/R injury in C57BL/6 mice but did not exhibit its cardioprotective effects in ALDH2-KO mice. TUNEL, Evan's blue/triphenyl tetrazolium chloride, and reactive oxygen species (ROS) assays showed that RIC's effect on reducing myocardial cell apoptosis, myocardial infarction area, and ROS levels was insignificant in ALDH2-KO mice. Our results showed that RIC could increase ALDH2 protein levels, activate sirtuin 3 (SIRT3)/hypoxia-inducible factor 1-alpha (HIF1α), inhibit autophagy, and exert myocardial protection. This study revealed that RIC could exert myocardial protection via the ALDH2/SIRT3/HIF1α signaling pathway by reducing 4-HNE secretion.


Assuntos
Traumatismo por Reperfusão Miocárdica , Sirtuína 3 , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Autofagia
18.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 423-432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37314537

RESUMO

Neurofilament light chain (NFL), as a measure of neuroaxonal injury, has recently gained attention in alcohol dependence (AD). Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme which metabolizes the alcohol breakdown product acetaldehyde. An ALDH2 single nucleotide polymorphism (rs671) is associated with less ALDH2 enzyme activity and increased neurotoxicity. We examined the blood NFL levels in 147 patients with AD and 114 healthy controls using enzyme-linked immunosorbent assay and genotyped rs671. We also followed NFL level, alcohol craving and psychological symptoms in patients with AD after 1 and 2 weeks of detoxification. We found the baseline NFL level was significantly higher in patients with AD than in controls (mean ± SD: 264.2 ± 261.8 vs. 72.1 ± 35.6 pg/mL, p < 0.001). The receiver operating characteristic curve revealed that NFL concentration could discriminate patients with AD from controls (area under the curve: 0.85; p < 0.001). The NFL levels were significantly reduced following 1 and 2 weeks of detoxification, with the extent of reduction correlated with the improvement of craving, depression, and anxiety (p < 0.001). Carriers with the rs671 GA genotype, which is associated with less ALDH2 activity, had higher NLF levels either at baseline or after detoxification compared with GG carriers. In conclusion, plasma NFL level was increased in patients with AD and reduced after early abstinence. Reduction in NFL level corroborated well with the improvement of clinical symptoms. The ALDH2 rs671 polymorphism may play a role in modulating the extent of neuroaxonal injury and its recovery.


Assuntos
Alcoolismo , Humanos , Alcoolismo/genética , Aldeído-Desidrogenase Mitocondrial/genética , Filamentos Intermediários , Fatores de Risco , Polimorfismo de Nucleotídeo Único/genética , Consumo de Bebidas Alcoólicas , Predisposição Genética para Doença
19.
Carcinogenesis ; 45(1-2): 95-106, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37978873

RESUMO

The alcohol metabolite acetaldehyde is a potent human carcinogen linked to esophageal squamous cell carcinoma (ESCC) initiation and development. Aldehyde dehydrogenase 2 (ALDH2) is the primary enzyme that detoxifies acetaldehyde in the mitochondria. Acetaldehyde accumulation causes genotoxic stress in cells expressing the dysfunctional ALDH2E487K dominant negative mutant protein linked to ALDH2*2, the single nucleotide polymorphism highly prevalent among East Asians. Heterozygous ALDH2*2 increases the risk for the development of ESCC and other alcohol-related cancers. Despite its prevalence and link to malignant transformation, how ALDH2 dysfunction influences ESCC pathobiology is incompletely understood. Herein, we characterize how ESCC and preneoplastic cells respond to alcohol exposure using cell lines, three-dimensional organoids and xenograft models. We find that alcohol exposure and ALDH2*2 cooperate to increase putative ESCC cancer stem cells with high CD44 expression (CD44H cells) linked to tumor initiation, repopulation and therapy resistance. Concurrently, ALHD2*2 augmented alcohol-induced reactive oxygen species and DNA damage to promote apoptosis in the non-CD44H cell population. Pharmacological activation of ALDH2 by Alda-1 inhibits this phenotype, suggesting that acetaldehyde is the primary driver of these changes. Additionally, we find that Aldh2 dysfunction affects the response to cisplatin, a chemotherapeutic commonly used for the treatment of ESCC. Aldh2 dysfunction facilitated enrichment of CD44H cells following cisplatin-induced oxidative stress and cell death in murine organoids, highlighting a potential mechanism driving cisplatin resistance. Together, these data provide evidence that ALDH2 dysfunction accelerates ESCC pathogenesis through enrichment of CD44H cells in response to genotoxic stressors such as environmental carcinogens and chemotherapeutic agents.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas do Esôfago/genética , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Neoplasias Esofágicas/patologia , Fatores de Risco , Consumo de Bebidas Alcoólicas/genética , Cisplatino/farmacologia , Aldeído-Desidrogenase Mitocondrial/genética , Etanol/metabolismo , Acetaldeído/metabolismo , Transformação Celular Neoplásica , Células-Tronco Neoplásicas/patologia , Álcool Desidrogenase/genética
20.
Alcohol Alcohol ; 59(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950904

RESUMO

Ethanol metabolism plays an essential role in how the body perceives and experiences alcohol consumption, and evidence suggests that modulation of ethanol metabolism can alter the risk for alcohol use disorder (AUD). In this review, we explore how ethanol metabolism, mainly via alcohol dehydrogenase and aldehyde dehydrogenase 2 (ALDH2), contributes to drinking behaviors by integrating preclinical and clinical findings. We discuss how alcohol dehydrogenase and ALDH2 polymorphisms change the risk for AUD, and whether we can harness that knowledge to design interventions for AUD that alter ethanol metabolism. We detail the use of disulfiram, RNAi strategies, and kudzu/isoflavones to inhibit ALDH2 and increase acetaldehyde, ideally leading to decreases in drinking behavior. In addition, we cover recent preclinical evidence suggesting that strategies other than increasing acetaldehyde-mediated aversion can decrease ethanol consumption, providing other potential metabolism-centric therapeutic targets. However, modulating ethanol metabolism has inherent risks, and we point out some of the key areas in which more data are needed to mitigate these potential adverse effects. Finally, we present our opinions on the future of treating AUD by the modulation of ethanol metabolism.


Assuntos
Alcoolismo , Humanos , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Etanol/efeitos adversos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído Desidrogenase/metabolismo , Álcool Desidrogenase , Consumo de Bebidas Alcoólicas/efeitos adversos , Acetaldeído/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...